SPEED LAB

PURPOSE: to determine the speed of moving objects using the formula: V=d/t.

MATERIALS: ramp, steel ball, meterstick or metric tapes, textbooks, ruler

INTRO: The three kinds of motion are: slowing down, steady, and speeding up.

PART A -- Slowing Down Motion.

- 1. Place two textbooks on the floor. Rest one end of the ramp on the textbooks.
- 2. Place the ball in the groove at the top of the ramp. When the person timing is ready and WITHOUT PUSHING THE BALL, let it roll down the ramp.
- 3. Start timing as soon as the ball hits the floor. Let it roll for 2 seconds and then stop the ball.
- 4. Measure the distance the ball rolled from the end of the ramp.
- 5. Repeat two more times. Record all the data in the table below.
- 6. Redo steps 2 through 6, letting the ball roll for 4, 6, 8, and 10 seconds.
- 7. Calculate the average distance the ball rolled. Then calculate the average speed of the ball. Use the equation: Speed = Distance : Time
- 8. Construct a distance-time graph.

TIME (sec)	Distance		(centimete	ers)	Speed (cm/sec)
	Trial 1	Trial 2	Trial 3	Average	
0	0	0	0	0	0
2					
4					
6					
8			,		
10					

PART B -- Steady motion

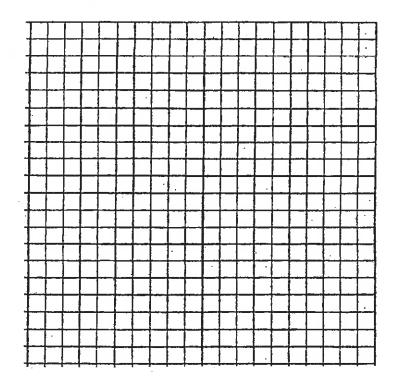
- 1. The illustration below represents a series of flash photos of a dry-ice puck sliding across the floor. The time between each flash is 0.1 second.
- 2. Measure the distance from the left side of the first puck to the left side of the second puck. Record this data.
- 3. Measure the distance from the left side of the first puck to the left side of the third puck. Record this data. Repeat for the remaining pucks.
- 4. Calculate the speed of the ball for each distance using the equation:

 SPEED = DISTANCE TIME Enter it on the data table.
- 5. After you have performed all the calculations, construct a distance-time graph.

|--|

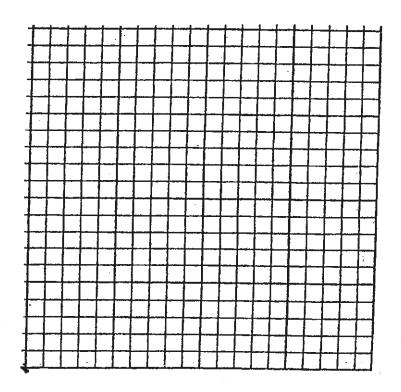
Time (sec)	Distance (cm)	Speed (cm/sec)
0	0	0
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		

PART C -- Speeding up motion

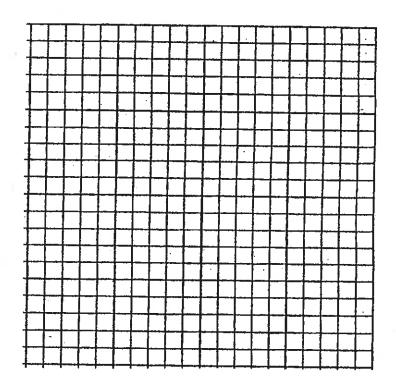

- 1. The following data table shows the results of a rocket launch.
- 2. Calculate the speed of the rocket for each of the first six seconds of the flight.

3. Construct a distance-time graph of the data.

Time (sec)	Distance (miles)	Time (hours)	Speed (miles/ hour)
0	0	0	
1	0.01	0.00028	
2	0.08	0.00056	
3	0.2	0.00083	
4	0.6	0.00111	
5	1.3	0.00139	
6	2.5	0.00167	


ROUND OFF
TO THE TO THE ST A
WHOLE A

Science 9	Speed Lab	Report	Names	
		HOUR	-	


Choose among the following for the questions 1-3: straight, curves up, curves down

- What is the shape of a distance-time graph when motion is slowing down?
 What is the shape of a distance-time graph when motion is steady?
- 3. What is the shape of a distance-time graph when motion is speeding up?
- 4. In Part A, which two forces were acting on the ball as it rolled? _____

· *2

-1

