| | tion: Solar Energy
ow is Earth's atmosphere | and the Atmosphere heated? | |-------------|---|---| | _ | | | | 2. N | ame the two primary sour | ces of heat in the atmosphere. | | | | | | | 3. radiation | 4 | | or ph | | 4 | | | 4. wavelength | a. the waves that make up all forms of radiation b. the distance from any point on a wave to a | | | | radiation b. the distance from any point on a wave to a identical point on the next wave c. all the frequencies or wavelengths of | | - | 4. wavelength 5. electromagnetic | radiation b. the distance from any point on a wave to a identical point on the next wave | | 7. V | 4. wavelength 5. electromagnetic waves 6. electromagnetic | radiation b. the distance from any point on a wave to a identical point on the next wave c. all the frequencies or wavelengths of electromagnetic radiation d. all forms of energy that travel through spa as waves, including the energy that Earth receives from the sun | | | 4. wavelength 5. electromagnetic | radiation b. the distance from any point on a wave to a identical point on the next wave c. all the frequencies or wavelengths of electromagnetic radiation d. all forms of energy that travel through spa as waves, including the energy that Earth receives from the sun | Original content Copyright © Holt McDougal. All rights reserved. Additions and changes to the original content are the responsibility of the instructor. | Name | Class Date | |-----------|---| | Directed | Reading continued | | 11. Which | wavelengths are shorter than visible light? Which are longer? | | | | | , | | | | | | THE ATM | OSPHERE AND SOLAR RADIATION | | 12 | Almost all radiation that has a wavelength shorter than the wavelengths of visible light is absorbed by the a. lower atmosphere. b. thermosphere. c. upper atmosphere. d. stratosphere. | | 13 | X rays, gamma rays, and ultraviolet rays are absorbed by molecules of nitrogen and oxygen in the mesosphere and a. lower atmosphere. b. thermosphere. c. upper atmosphere. d. stratosphere. | | 14 | Ultraviolet rays are absorbed and act upon oxygen molecules to form ozone in the a. lower atmosphere. b. thermosphere. c. upper atmosphere. d. stratosphere. | | 1: | 5. Solar rays with longer wavelengths, such as visible and infrared waves reach the a. lower atmosphere. b. thermosphere. c. upper atmosphere. d. stratosphere. | | 1 | 6. Most incoming infrared radiation is absorbed by carbon dioxide, water | | | vapor, and other complex molecules in the | | 17. F | Iow much of the radiation from visible light waves is absorbed as the adiation passes through the atmosphere? | |-------|--| | _ | | | | | | 18. V | What causes scattering? | | | | | _ | | | - | | | 19. ' | What happens when particles and gas molecules in the atmosphere reflect a | | | pend, or deflect, solar rays? | | | | | | | | | | | | | | | | | 20 | | | 20. | What does scattering do to the solar radiation that travels to Earth? | | 20. | | | 20. | | | 20. | | | | What does scattering do to the solar radiation that travels to Earth? | | | | | | What does scattering do to the solar radiation that travels to Earth? | | | What does scattering do to the solar radiation that travels to Earth? | | | What does scattering do to the solar radiation that travels to Earth? What effect does scattering have on the sky's appearance? | | | What does scattering do to the solar radiation that travels to Earth? What effect does scattering have on the sky's appearance? | | 21. | What does scattering do to the solar radiation that travels to Earth? What effect does scattering have on the sky's appearance? | | 21. | What does scattering do to the solar radiation that travels to Earth? What effect does scattering have on the sky's appearance? | | 21. | What does scattering do to the solar radiation that travels to Earth? What effect does scattering have on the sky's appearance? | | Directe | ed Reading continued | | |----------|--|-------------| | | amount of energy that is absorbed or reflected by Earth's surfacertain characteristics. List eight of them. | e depends | ••• | at is the fraction of solar radiation that is reflected off the surfacect called? | e of an | | | ě | · | |
5 Wh | at is Earth's albedo? Explain your answer. | | | | at is partir s alocae. Explain year answer | | | | | | | | ., | | | ABSOI | RPTION AND INFRARED ENERGY | • | | | 26. Solar radiation that is not reflected isa. absorbed.b. scattered.c. radiated.d. dissipated. | | | | 27. When Earth's surface absorbs solar radiation, the surface meated by a. longer-wavelength infrared rays and ultraviolet light. b. short-wavelength infrared rays and visible light. c. short-wavelength microwaves and infrared light. d. longer-wavelength microwaves and ultraviolet light. | naterials a | | Name | Class Date | |------------------|---| | Dir | rected Reading continued | | · | 28. Heated materials on Earth's surface convert solar energy into infrared rays a. with longer wavelengths. | | | b. with shorter wavelengths.c. with equal wavelengths.d. The solar energy is not converted. | | 29. V | What happens to the infrared radiation that Earth emits into the atmosphere? | | | | | 30. [°] | What does the absorption of thermal energy from the ground do to Earth's | | | surface? | | | | | | | | | Warm air near Earth's surface sometimes bends light rays to cause an effect called a | | 32. | Earth's atmosphere reduces the escape of energy that radiates from | | | The warming of the surface and lower atmosphere of Earth that occurs when | | | carbon dioxide, water vapor, and other gases in the air absorb and radiate infrared radiation is called the | | | How does the amount of solar energy that enters Earth's atmosphere generally compare to the amount that escapes into space? | | | What is one human activity that may have caused the average temperature of the atmosphere to increase in recent years? | | | | | | | | | | Original content Copyright © Holt McDougal. All rights reserved. Additions and changes to the original content are the responsibility of the instructor. | Name | eClassDate | |------|---| | Dii | rected Reading continued | | VAF | RIATIONS IN TEMPERATURE | | | Why are the warmest hours of the day usually mid- to late afternoon and not noon? | | | | | , . | | | | What is the primary factor that affects how much solar energy reaches any point on Earth's surface? | | | | | 38. | Near the equator, the rays of the sun strike the ground at an angle of about | | | What happens to the energy when sunlight hits Earth at an angle smaller than 90°? | | | • | | | | | 40. | Why are average temperatures higher at the equator than near the poles? | | | • | | | | | 41. | Seasonal variations in temperature occur because of | | 42. | Why does the Northern Hemisphere have higher temperatures for one part of the year and lower temperatures the rest? | | | | | | | | 43 | . Why does the amount of water in the air affect the temperature of a region? | | lame | Class Date | |----------|---| | Direc | eted Reading <i>continued</i> | | | ny do areas of high elevation become warm during the day and cool quickly night? | | | • | | <u> </u> | | | 5. Wł | ny do desert temperatures vary widely between day and night? | | . · | | | | | | | hy are land areas close to large bodies of water generally cooler during the y and warmer at night than similar inland areas? | | | | | | | | | | | | · | | CONE | DUCTION | | | 47. As molecules in a substance become heated, they a. move at the same rate as when they are cooled. b. move faster. | | • | c. move more slowly. d. do not move at all. | | | 48. What effect do collisions between molecules have on the molecules? a. Collisions change their structures. b. Collisions break them apart. c. Collisions cool them. d. Collisions warm them. | | • | 49. The transfer of energy as heat from one substance to another by direct contact is called a. conduction. b. collision. c. firing. d. baking. | | Class Date | |--| | Reading continued | | Solid substances are good conductors because molecules a. are close together. b. are far apart. c. cannot collide. d. move slowly. | | Air is a poor conductor because molecules a. are close together. b. are far apart. c. cannot collide. d. move slowly. | | Conduction heats only the lowest few centimeters of the atmosphere because a. air does not come into direct contact with Earth. b. air comes into direct contact with the warmed surface of Earth. c. molecules of air in the lower atmosphere are closer together. d. molecules in the upper atmosphere do not collide. | | is the primary cause of the heating of the lower atmosphere? | | | | | | movement of matter due to differences in density, which is caused by erature variations, results in the transfer of heat called | | erature variations, results in the transfer of heat called n does convection occur? | | erature variations, results in the transfer of heat called | | erature variations, results in the transfer of heat called | | erature variations, results in the transfer of heat called n does convection occur? It happens to air heated by radiation or conduction? | | | | Name | | Class | Date | | |----------------|--------------------|-------------------|-----------------|----------| | Directed Re | ading continued | | | | | 57. How is Ea | rth's atmosphere | warmed? | • | | | | · · · · · · | | u | | | | | | | | | | | | | | | 58. Why is the | e atmospheric pre | essure lower bene | ath a mass of w | arm air? | | | | • | | | | | | | , | | | - | . • | | | | | | | | | | | | | | | - | | | . 1 | | · . | | | 59. How do d | lifferences in atm | ospheric pressure | create winds? | | | | | • • | | | | | | | | | | | | | ė |