Chapter Review (continued)

Part B. Concept Review

Directions: Complete the table below by writing the correct information in the blank spaces.

Element	Chemical symbol	Atomic number	Number of protons	Number of neutrons	Mass number
1. Sodium		11	11	12	23
2. Carbon	С		6	6	12
· 3.	Fe	26	26	-30	56
4. Sulfur	S	16		16	32
5. Nitrogen	N	7	7	-	14
6. Oxygen	0	8	8	8	
7:	He	2	. 2	2	4
8. Chlorine-35	Cl	17	17		35
9. Copper	Cu	29	29	35	
10. Chlorine-37	CI	1 12	1.7	20	37

Directions: Refer to the periodic table below and the boxes at the right of the table to answer questions 11-15.

1	13																
	2											13	14	15	16	17	H
		3	_4_	5	6	7	8	9	10	11	12					Ç	
A			Fe														
-		-								Au							
В													for-				****

- Na Na
- 28 Fe
- 79 Au 197

- ____ 11. Which element has a greater atomic mass, A or B?
 - 12. Which element is a metal, B or C?
 - 13. In which group is gold?
 - 14. What is the average atomic mass of iron?
- ____ 15. What is the atomic number of sodium?

Directed Reading for Section 1 - Structure of the Atom

Section 2 - Masses of Atoms

Directions: Use the terms below to complete the following paragraphs about atoms, atomic mass, and isotopes. Terms may be used more than once.

six	number		•	•
neutron(s)	proton(s)	mass	quarks	six protons
The electr	on has very little	e mass compared	to the 1	or
2	The m	ass of the atom o	lepends on the nu	cleus and how
many 3	a	nd 4	it has. T	he sum of the
protons and n	eutrons is the m	ass 5	of an at	om. The number
of neutrons in	n an atom can be	found by subtra	cting the atomic n	number from the
6	numbe	r. The mass of th	e atom is so small	that there is a
measure called	d the atomic 7.	95	unit designated	l by amu.
8	and 9		make up the nucle	eus and are made up
of 10	The	e are 11	unique	ely .
				l the nucleus called
the 13.	The	nuclei of all aton	ns of a given elemer	nt always have the
same number o	of 14.	They w	ill also have the sam	ne number of
15,	around	the nucleus. Some	e atoms may have n	nore or fewer
16	than wi	l other atoms of 1	he same element. A	toms of the same
element with d	ifferent numbers	of neutrons are ca	alled 17	Every
				ain six neutrons and
others have eig				

Isotopes in Dating Methods

Geologists use some elements' half-lives to determine the ages of rocks and fossils. Carbon isotope dating is used to date objects between 1000 and 60 000 years old. Earth's age is thought to be about 4.5 billion years. Fill in the chart to show the ratio of a radioisotope to its decay product after three half-lives.

1. Would carbon be used in dating moon rocks, which are nearly as old as Earth? Why or why not?

Isotope	Half-life	Decays to
rubidium-87		
potassium-40		
carbon-14	5730 years	carbon-12

- 2. Potassium-40 decays into the isotope argon-40 with a half-life of about 1.3 billion years. Add this information to the table above. Potassium is also a common element in Earth's crust. The argon decay product is trapped in the rock. Why would this element be useful for dating rocks formed during ancient Earth events?
- 3. If a rock sample is found to contain potassium-40 and argon-40 in the proportion 1:1, how old would it be?
- 4. Suppose a rock sample is 2.6 billion years old. If there were 20 grams of potassium-40 at the time the rock formed, how much argon-40 would the sample contain? What proportion of potassium-40 to argon-40 would the rock contain?

5. Rubidium-87 decays to strontium-87 with a half-life of 49 billion years. Add this information to the table. Why might this isotope and its decay product be less useful for dating than potassium-40 and argon-40?

ATOMIC STRUCTURE

are mad	le up of only one kind of atom.
= the nu	mber of protons in the nucleus.
= the # c	of protons and neutrons in the nucleus.
# neutrons = mass # - atomic #	(rounded off to the nearest whole #)
Subatomic Particles:	
omplete the following chart:	

Particle	Location	Mass (amu)	Charge
Proton	/		
Electron	1		
Neutron			

Find the Missing Numbers

Use your knowledge of atomic number and mass number to fill in the missing numbers:

Element		120	HOW MANY?					
	Atomic #	Mass #	Protons	Neutrons	Electrons			
iron				87	La			
Sulfur		4).						
Carbon				3				
Fluorine		2						
Calcium		211						
Nitrogen				:	7			
Copper	8			vill				
Sodium		-	* X					
Mercury		•						
Silver								