| me
Skills Worksheet | Class | Date | | |------------------------|---------------------------|-------------------------|-------| | Directed R | eading 29 | .a (EVEN |)
 | | ection: Solar A | ctivity | | • | | | | erior and atmosphere be | have? | | . What causes the cor | ntinuous rising and sink | ng of the sun's gases? | , , , | | | · | | | | | | | | | 3. What else keeps the | e sun's gases in motion? | | | | | | | | | 4. Why don't all locat | ions on the sun rotate at | the same speed? | | | | | | | | 5. On average, how lo | ong does it take the sun | o rotate once? | | | | | | | ## **SUNSPOTS** - 6. What do the movements of gases in the sun's convective zone and the movements caused by the sun's rotation produce? - a. solar wind - b. convection currents - c. charged ions - d. magnetic fields - 7. Why are some regions of the photosphere so much cooler than others? - a. The sun's surface temperatures vary wildly. - b. Less energy is being transferred to the regions. - c. Changes in the magnetic fields reduce heat. - d. More energy is being transferred to the regions. | Name | Class | Date | | |-------------------------|--------------------------|---------------------------------------|------------| | Directed Reading conta | inued | | | | | | 1 1 annual ding | | | | | ns than the surrounding | | | photosphere? | 0.000.00 | , | | | a. up to 3,000 | 0,000 °C | U | | | b. up to 300, | 00.0C | | | | c. up to 30,0 | 00°C | | | | d. up to 3,00 | 0 % | • | | | 9. What is a sunspot? | | | | | | | | | | • | • | | | | | | | <u> </u> | | 10. What is granulation | ? . | • | | | | | | | | | | | · | | | | | | | | | | <u> </u> | | | • | | | | THE SUNSPOT CYC | _E | · · · · · · · · · · · · · · · · · · · | | | 12 What did si | ınspots first reveal abo | ut the sun? | | | a. The sun | rotates. | • | • | | | is not made of fire. | | | | c. The sun | is fueled by nuclear fu | sion. | • | | d. The sun | | | | | | • • | | of cunenci | | 13. Later, astro | momers learned that the | e numbers and positions of | or sunspo | | | ycle that lasts about | | • | | a. 75 years | | | , | | b. 50 years | | | • | | c. 27 years | | | | | d. 11 years | 3. | • • • • • • • • • • • • • • • • • • • | | | 1/1 A sunspot | cycle begins when | | | | a there is | a sudden increase in t | he number of sunspots all | across the | | siin | | | | | h the nun | nher of sunspots is ver | y high but begins to decre | ase. | | c the nun | nher of sunspots is ver | y low but begins to increa- | se. | | d the loca | ation of sunspots on th | e sun suddenly changes. | | | d. mo 1000 | | - | | | ame | Class Date | |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Directed | d Reading continued | | | | | 15 | 5. Where do groups of sunspots initially appear? | | | a. at the sun's poles | | | b. at the sun's equator | | | c. all across the sun's surface | | • | d. about midway between the sun's equator and poles | | 16 | 6. Over the next few years after they appear, the number of sunspots | | | a. increases until they reach a peak of 10 to 20 sunspots. | | 4 | b. increases until they reach a peak of more than 100 sunspots. | | | c. decreases steadily until there are no sunspots at all. | | | d. stabilizes between 40 and 50 sunspots. | | 7 W/hat | t happens after the number of sunspots reaches its peak? | | /. W Hat | mappens after the number of sunspots reaches its peak: | | | | | • | | | · | | | | | | | | | - ' | | | | | | | | | | | | OLAD | ERUPTIONS | | OLAK | ERUPTIONS | | 1 | 9. The solar-activity cycle is caused by | | • | a. the alignment of solar system planets. | | | b. the changing solar magnetic field. | | | c. the rate at which fusion occurs in the solar core. | | | d. the changing pattern of currents in the convective layer. | | | | | 2 | 20. The solar-activity cycle is characterized by | | | a. decreases in solar surface events. | | | b. increases in solar surface events. | | | c. increases and decreases in sunspot activity. | | • | d. increases and decreases in various types of solar activities. | | | 21. What are events in which the sun emits atomic particles called? | | · . | a. solar cycles | | | b. solar eruptions | | | c. solar ejections | | | d. solar eyents | | _ | The state of s | | | cted Reading continued | |---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | _ | 22. One form of atmospheric disturbance on the sun is called a | | | prominence, which can be described as | | | a. whirlpools in the photosphere. | | | b. great clouds of glowing gases. | | • | c. rivers of gas that look like streams. | | | d. dark regions in the photosphere. | | | | | | 23. What shape do prominences take? | | | a. huge arches that reach high above the sun's surface | | | b. huge circular storms on the sun's surface | | | c. massive waves that cross the sun's surface | | • | d. giant masses of gas that resemble mountains | | | | | | 24. How does each solar prominence get its shape? | | | a. It follows curved lines of magnetic force from a region of one | | | magnetic polarity to a field of the same polarity. | | | b. It erupts from the sun's surface but is pulled back down by the sun' | | | gravity, forming a curve. | | | c. It follows the curved shape of the sun's surface. | | | d. It follows the curved shape of the sun 3 surfaces. d. It follows curved lines of magnetic force from a region of one | | | | | | magnetic polarity to a field of the opposite polarity. | | | | | | 25. What are the most violent of all solar disturbances? | | | _ 25. What are the most violent of all solar disturbances? | | | a. prominences | | | a. prominences b. sunspots | | | a. prominences b. sunspots c. solar flares | | | a. prominences b. sunspots | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that a. solar flares occur on a regular cycle that lasts about two years. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that a. solar flares occur on a regular cycle that lasts about two years. b. solar flares release the energy stored in the strong magnetic fields of | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that a. solar flares occur on a regular cycle that lasts about two years. b. solar flares release the energy stored in the strong magnetic fields of sunspots. | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that a. solar flares occur on a regular cycle that lasts about two years. b. solar flares release the energy stored in the strong magnetic fields of sunspots. c. solar flares are closely associated with the alignment of the planets | | | a. prominences b. sunspots c. solar flares d. coronal mass ejections 26. A solar flare is a a. sudden outward eruption of electrically charged particles, such as electrons and protons. b. brief outward eruption of atomic particles, such as protons and neutrinos. c. gradual increase in the stream of charged particles that make up the solar wind. d. huge, arched prominence that breaks its magnetic field and streams outward. 27. Although the trigger for a solar flare is unknown, scientists know that a. solar flares occur on a regular cycle that lasts about two years. b. solar flares release the energy stored in the strong magnetic fields of sunspots. | | Name | Class Date | |-------|--------------------------------------------------------------------| | | cted Reading continued | | | | | | 28. What can be formed by the release of energy in a solar flare? | | | a. prominences | | | b. oronal streams | | | c. coronal loops | | | d. waves in the solar wind | | | 29. How long do most solar flares last? | | | a. Few eruptions last more than an hour. | | | b. Most eruptions last for two or three hours. | | | c. Few eruptions last more than a minute. | | | d. Most eruptions last for a week. | | | | | | 30. A coronal mass ejection is | | | a. a part of the corona that is thrown off from the sun. | | | b. a part of a coronal loop that does not curve back to the sun. | | | c. a prominence that breaks away from its magnetic field. | | | d. another name for a certain type of solar flare. | | | 31. What is the space around Earth that contains a magnetic field? | | | a. the magnetometer | | | b. the magnetic corona | | | c. the magnetosphere | | | d. the magnet band | | 32. V | What are geomagnetic storms? What causes them? | | | | | . – | | | · · | | | 33. V | With what frequency do geomagnetic storms occur? | | | | | _ | | | - | | | - | | | | | | AUF | RORAS | | | 34. What are auroras? | | | a. halos of light around stars and the moon | | | b. long arches of gas on the sun's surface | | | c. electromagnetic sparks in the sun's atmosphere | | | d. bands of light in the sky | | Name | Class Date | |-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Direc | ted Reading continued | | · · · · · · | 35. How are auroras caused? a. They are caused by the interaction of solar wind and Earth's magnetosphere. b. They are caused by the interaction of solar wind and Earth's atmosphere. c. The solar wind bends around Earth. | | | d. The solar wind changes as it gets farther from the sun. | | - | 36. Where on Earth are auroras usually seen? a. near Earth's equator b. everywhere in Earth's atmosphere c. close to Earth's magnetic poles d. only in Earth's northern hemisphere | | | 37. Why are auroras usually seen close to Earth's magnetic poles? a. Electrically charged particles reach only Earth's magnetic poles. b. Electrically charged particles are guided toward the poles by the planet's rotation. c. Electrically charged particles are guided toward Earth's magnetic poles by Earth's magnetosphere. d. Electrically charged particles are more easily seen through the thin air near the poles. | | | a. Electrically charged particles heat up in Earth's atmosphere and begin to glow. b. Electrically charged particles strike the atoms and gas molecules in the upper atmosphere. c. Electrically charged particles enter the magnetosphere and begin to glow. d. Electrically charged particles explode once they are in contact with the atoms and gases of the atmosphere. | | | a. aurora borealis (eastern lights) b. aurora australis (aurora occidentalis) c. aurora borealis (northern lights) d. aurora australis (southern lights) | | | 40. What are auroras near the South Pole called? a. aurora borealis (eastern lights) b. aurora australis (aurora occidentalis) c. aurora borealis (northern lights) d. aurora australis (southern lights) | | Name | Class | Date | | |---------------------------------------|---------------------------------------|----------------------------|---------------| | Directed Reading o | ontinued | | | | 41. How far above E | arth's surface do auror | as normally occur? | | | | | | | | | | | , | | 42. When are auroras | most frequent? | | | | • | | · | | | | • | | · | | 43. How often are au | roras visible across th | e northern contiguous Uni | ted States? | | | | | | | 44. Where in the Un | ited States are auroras | visible almost every clear | , dark night? | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | 45. In addition to Ea | rth, where else have a | roras been recorded? | | | · · · · · · · · · · · · · · · · · · · | · | | | | | P. | | |