

The Nature of Waves

Directions: Answer the following questions on the lines provided.

1. What is a wave? 2. What travels on a wave? 3. How is a wave created? 4. What is a mechanical wave? 5. List the two types of mechanical waves and define them. **6.** What type of wave is a sound wave? 7. How does sound travel through a medium? 8. Describe the motion of something floating in water waves. 9. What causes ocean waves? 10. What are seismic waves?

Introduction to Waves

Testing Concepts

Direction	s: In th	e blank at the left, write the letter of the term that best completes each statement.
	1. A	is a repeating disturbance or movement that transfers energy through many

	1.		ing disturbance or me	ovement that transfer	s energy through mat-
		ter or space. a. medium	b. fluid	c. material	d. wave
	2.	The matter through a. medium	which mechanical wa b. substrate	ves travel is called a _ c. region	d. domain
	3.	The high point on a a. crest	wave is called its b. trough	c. rest position	d. none of these
	4.	The low point on a va. crest	wave is called its b. trough	c. rest position	d. none of these
-	5.		n of a longitudinal wa		
	6.		nnce between one point b. frequency		earest point just like it. d. trough
	7.	The of a way a. volume		velengths that pass a fi c. crest	ixed point each second d. trough
	8.	The of a way	we is the amount of tinb. frequency		ength to pass a point. d. trough
	9.	The greater a wave's a. more	amplitude, the b. less	energy the wave car c. both a and b	
	10.	is the bendi	ng of a wave caused b	y a change in its spee	d as it moves from
		a. Refraction	b. Reflection	c. Rarefaction	d. Fusion
-	11.		an object causes a wa b. Reflection		n and bend around it. d. Diffraction
	12.	When two or more v	waves overlap and cor	nbine to form a new v	wave, the process is

b. reflection

a. refraction

c. interference

d. diffraction

OverviewIntroduction to Waves

Directions: Complete the concept map using the terms in the list below.

Directions: For each of the following write the letter of the phrase that best completes the sentence.

- ______ 7. The high point of a transverse wave is ______
 - a. a rarefaction
- **b.** the frequency
- **c.** the crest
- ____ 8. The less dense region of a compression wave is called ______
 - a. a rarefaction
- **b.** the frequency
- c. the crest
- **9.** The number of wavelenghts that pass a fixed point each second is of a wave.
 - a. a rarefaction
- **b.** the frequency
- c. the crest

CLASS DATE

© Copyright D. C. Heath and Company

Types of Waves

1	1. A disturbance that travels through matter or empty						
	space is called a						
2	2. Waves change the of matter as they move						
	through it.						
	a. size b. mass c. arrangement						
3	. The matter through which a wave moves is called a						
	medium. The medium of an ocean wave is						
	a. sand b. salt water c. ships						
4	. Waves are classified by the way they move the						
	medium. A transverse wave moves the medium at						
	right angles to						
5	Longitudinal waves push matter back and forth. The						
	matter, or medium, moves parallel to the direction of						
	the wave. Two examples of longitudinal waves would						
	be						
	a. an ocean wave						
	b. a field of grass in the breeze						
_	c. a line of falling dominoes Figure 1						
Ö.	Figure 1 shows a wave.						
7	a. longitudinal b. transverse						
/.	Figure 2 shows a wave.						
Я.	a. longitudinal b. transverse Figure 2						
Ů.	When water moves in a wave, the energy of the wave moves a. along with the wave b. up and down only						
9.	When a wave moves through a spring, what moves all the way from one end to the other?						
	to the other?						